
Fundamental Concepts of Programming Languages
PL families
Lecture 02

conf. dr. ing. Ciprian-Bogdan Chirila

University Politehnica Timisoara
Department of Computing and Information Technology

October 4, 2022

CBChirila (DCTI) FCPL October 4, 2022 1 / 67

Lecture outline

Imperative PLs

Functional PLs

Declarative PLs

Sequential programming vs. concurrent programming

Parallel processes vs. concurent processes

Concurent programming languages

Distributed systems programming

Short history of PLs development

CBChirila (DCTI) FCPL October 4, 2022 2 / 67

The three PL paradigms

There are several criteria of PL classification...

Imperative

Functional

Declarative

Inside each family there is a diversity of languages

They have the same basic principles

CBChirila (DCTI) FCPL October 4, 2022 3 / 67

Imperative PLs

Imperative PLs

Imperative means that are based on instructions

Most widespread

Fortan, Cobol, Snobol4, Basic, Pascal, Ada, Modula-2, C, C++, C#,
Java

Their conception is based on the traditional von Neumann
architecture

The computer is made out of

Memory (holding data and instructions)
Command unit
Execution unit

CBChirila (DCTI) FCPL October 4, 2022 4 / 67

Imperative PLs

Imperative PLs

Are based on 2 concepts:

Sequential (step by step) execution of instructions
Keeping a modifiable set of values during program execution

Those values define the state of the system

CBChirila (DCTI) FCPL October 4, 2022 5 / 67

Imperative PLs

Imperative PLs

The 3 essential components:
Variables

Major component in imperative PLs

Memory cells with names assigned and values stored

Assignment instruction

Memorizing the computed value

Iteration

Typical way to do complex computation

To execute repeatedly a set of instruction

CBChirila (DCTI) FCPL October 4, 2022 6 / 67

Imperative PLs

Example of a C imperative language

Prime number testing

#include <stdio.h>

#include <math.h>

int prime(unsigned long n)

{

unsigned long i;

if(n<=1) return 0;

for(i=2;i<sqrt(n);i++)

if(n%i==0) return 0;

return 1;

}

int main()

{

unsigned long n;

printf("N=");

scanf("%ld", &n);

if(prime(n)) printf("The number %ld is prime!", n);

else printf("The number %ld is not prime!",n);

}

CBChirila (DCTI) FCPL October 4, 2022 7 / 67

Functional PLs

Functional PLs

Are based on mathematical concepts of

function
function application

applicative languages

are free from the von Neumann concept

LISP, SML, Miranda, F#

CBChirila (DCTI) FCPL October 4, 2022 8 / 67

Functional PLs

Functional PLs 4 essential components

The set of predefined primitive functions

The set of functional forms

Mechanisms that allow combining functions in order to create new ones

The apply operation

Allows applying a function on arguments and producing as a result new
values

The data set (objects)

The set of arguments and function values

CBChirila (DCTI) FCPL October 4, 2022 9 / 67

Functional PLs

Example of Lisp functional language

List atom counting

(defun count(x)

(COND ((NULL x) 0)

((ATOM x) 1)

(T (+ count (CAR x))

(count (CDR x))))))

CBChirila (DCTI) FCPL October 4, 2022 10 / 67

Functional PLs

Example of F# functional language

Fibonacci Number formula

let fib n =

let rec g n f0 f1 =

match n with

| 0 -> f0

| 1 -> f1

| _ -> g (n - 1) f1 (f0 + f1)

g n 0 1

CBChirila (DCTI) FCPL October 4, 2022 11 / 67

Declarative PLs

Declarative PLs

in the development process of a software system
in the requests and specifications phase

we say WHAT must the system do

in the design and implementation phase

we implement HOW the system works

CBChirila (DCTI) FCPL October 4, 2022 12 / 67

Declarative PLs

What’s new in declarative PLs?

we stop at the specification phase

we describe what we expect from a system

we do not to define the implementation of the system

we specify only

problem properties
problem conditions

the system will automatically find the answers

CBChirila (DCTI) FCPL October 4, 2022 13 / 67

Declarative PLs

Declarative PLs

To focus the effort and creativity in the request definition phase

Very high level languages

SQL

Structured Query Language
is a domain specific language
is used for database interrogation

LINQ

Language Integrated Query
Microsoft .NET Framework component

Prolog

both declarative and logic
problem conditions are expressed through predicate calculus

CBChirila (DCTI) FCPL October 4, 2022 14 / 67

Declarative PLs

Example of declarative program in LINQ

var results =

from c in SomeCollection

where c.SomeProperty < 10

select new {c.SomeProperty, c.OtherProperty};

foreach (var result in results)

{

Console.WriteLine(result);

}

var results =

SomeCollection

.Where(c => c.SomeProperty < 10)

.Select(c => new {c.SomeProperty, c.OtherProperty});

results.ForEach(x => {Console.WriteLine(x.ToString());})

CBChirila (DCTI) FCPL October 4, 2022 15 / 67

Declarative PLs

Example of declarative program in Prolog

parent(helen,ralph).

parent(peter,ralph).

parent(peter,marry).

parent(ralph,anna).

parent(ralph,dan).

? - parent(peter,mary).

yes

? - parent(peter,x).

x=ralph

? - parent(peter,x).

x=ralph;

x=mary;

no

? - parent(y,anna), parrent(x,y).

x=helen;

x= peter;

y=ralph;

no

CBChirila (DCTI) FCPL October 4, 2022 16 / 67

Declarative PLs

Generally, PLs

are not pure

imperative or functional or declarative

ML

functional with imperative facilities

C

programs defining and using functions intensively

F#

functional with imperative facilities

CBChirila (DCTI) FCPL October 4, 2022 17 / 67

Declarative PLs

PLs and machines

Imperative languages

work optimal on actual computers

Functional and declarative languages have

solid theoretical foundations
automatic checking
high level programming

CBChirila (DCTI) FCPL October 4, 2022 18 / 67

Declarative PLs

Functional and declarative PL domains

Artificial intelligence

List processing

Databases

Symbolic calculus

Natural language processing

Knowledge bases

Program checking

Theorem provers

CBChirila (DCTI) FCPL October 4, 2022 19 / 67

Sequential programming vs. concurrent programming

Sequential programming vs. concurrent programming

Imperative program

actions
data

If the next action is initiated when the current action has finished

then he program becomes a process

The programming activity is named as sequential programming

CBChirila (DCTI) FCPL October 4, 2022 20 / 67

Parallel vs. concurrent processes

Parallel vs. concurrent processes

usually a process uses computer resources

one at a time

if only one process in a system is using all the resources

we got a weak usage performance
multiple processors are useless

multiple processes in memory using multiple CPUs/cores

when each process uses one CPU/core
creates a physical parallelism

multiple processes in memory which use one CPU/cores in time
division

is useful
creates logic parallelism
virtually the processes are executed in parallel

CBChirila (DCTI) FCPL October 4, 2022 21 / 67

Parallel vs. concurrent processes

Multiprogramming operating systems

are derived from the previous ideas

multiple programs are present in the memory

they are executed in parallel

their physical parallelism depends on

The number of CPUs/cores/virtual cores
The type of CPUs/cores/virtual cores (hyperthreading)

multiprogramming is present in modern OSs like: Windows, Unix,
MacOS, OS/2

they allow multi-programmed process management
they share the system’s resources
they create a great improvement to the resource usage rate

CBChirila (DCTI) FCPL October 4, 2022 22 / 67

Parallel vs. concurrent processes

Programs on multiprogramming OSs

form parallel processes

are executed independently

as if they would ran alone on a mono programmed system

resource conflicts are

handled by the OS
opaque to the application programmer

CBChirila (DCTI) FCPL October 4, 2022 23 / 67

Parallel vs. concurrent processes

Processes with communication

Isolated processes are not always a solution

The solution may be multiple processes

asynchronous
with message exchange
with data transfer
sharing in common the system resources

Concurrent processes

Sometimes they need synchronization

CBChirila (DCTI) FCPL October 4, 2022 24 / 67

Parallel vs. concurrent processes

Synchronization cases

Mutual exclusion

Cooperation

CBChirila (DCTI) FCPL October 4, 2022 25 / 67

Parallel vs. concurrent processes

Mutual exclusion

Multiple processes use the same resource

The access is permitted to one process at a time

The access requests must be sequenced

the synchronization can be based on a condition
a process can be delayed until a condition becomes true

Critical resource

is a resource that may be used in a single process at one time

Critical section

is the code section manipulating the critical resource

CBChirila (DCTI) FCPL October 4, 2022 26 / 67

Parallel vs. concurrent processes

Mutual exclusion

Definition:

Mutual exclusion is a synchronization form for concurrent processes
allowing that only one process to be in the critical section at one time

A language construction to solve this issue is the critical region

Added by CAR Hoare and P. Brinch Hansen in 1972 and involves:
to emphasis program text and variables which denote the critical
resource
to add new keywords like region, when for the access of such resources
to add a synchronization condition to obtain a conditional critical
region

CBChirila (DCTI) FCPL October 4, 2022 27 / 67

Parallel vs. concurrent processes

Cooperation

messages or data are exchanged between processes

they keep a producer/consumer relationship

the information produced by a process is used/consumed by the other

describing concurrent processes and their relationship leads to
concurrent programming

resources are

shared between authorized processes
protected from unauthorized processes

when the time factor is involved we get real-time processes

concurrent processes programming languages

CBChirila (DCTI) FCPL October 4, 2022 28 / 67

Parallel vs. concurrent processes

Distributed systems

Concurrent systems

The most widespread because of the Internet and networking

Communication based on message transmission

CBChirila (DCTI) FCPL October 4, 2022 29 / 67

Concurrent programming languages

Concurrent programming languages

Are developed in the last 30 years

Have special facilities to describe

parallel and concurrent processes
synchronization and communication

Edison defined by P. Brinch Hansen 1980

To describe concurrent programs of small and medium sizes for micro
and mini computing systems

CBChirila (DCTI) FCPL October 4, 2022 30 / 67

Concurrent programming languages

The ”when” instruction

The processes

communicate through
common variables
synchronize through
conditional critical regions

when b_1 do instr_list_1

else b_2 do instr_list_2

...

else b_n do instr_list_n

CBChirila (DCTI) FCPL October 4, 2022 31 / 67

Concurrent programming languages

The ”when” instruction

the common variable for the critical region is not specified

Edison solution

Mutual exclusion of all critical regions
Only one critical sequence is executed at one time

thus, it results

Simplified language implementation
Complex restrictions regarding process concurrency

CBChirila (DCTI) FCPL October 4, 2022 32 / 67

Concurrent programming languages

The ”when” instruction

Is executed in two phases
Synchronization phase

The process is delayed until no other process executes the critical phase

of a when instruction

Critical phase

Logical expressions are evaluated b 1, b 2,...,b n

If one of them is true the corresponding instruction list is executed

If all are false the synchronization phase is repeated

CBChirila (DCTI) FCPL October 4, 2022 33 / 67

Concurrent programming languages

The ”cobegin” instruction

describes the concurrent activities

cobegin

const_1 do instr_list_1 also

const_2 do instr_list_2 also

...

const_n do instr_list_n

end

the instruction list represents processes to be executed in parallel

processes start at cobegin

cobegin ends when all processes end

each process has a constant attached
the constant semantic in PL implementation dependent

necessary memory space
the processor number
the priority etc.

CBChirila (DCTI) FCPL October 4, 2022 34 / 67

Concurrent programming languages

The Edison program

Has the form of a procedure

Is launched by activating the procedure instructions

Is formed out of several modules

The exported identifiers are preceded by the star * symbol

CBChirila (DCTI) FCPL October 4, 2022 35 / 67

Concurrent programming languages

The Philosophers problem

5 philosophers spend their life eating and meditating

When a philosopher is hungry goes to the dining room, sits at the
table and eats

To eat from the spaghetti dish he needs 2 forks

On the table there are only 5 forks

There is only one fork between two places

Each philosopher can access the forks at his right and left hand-side

After eating (a finite amount of time) the Philosopher puts back the
forks and leaves the room

CBChirila (DCTI) FCPL October 4, 2022 36 / 67

Concurrent programming languages

The solution program

the philosophers behavior is modeled by concurrent processes

the forks are modeled by the shared resources

philosophers wait until both forks are free

the ”forks” table stores the number of forks available to a philosopher

it can occur the starvation situation when the neighbors are eating
alternatively

the 5 philosophers represent the 5 activations of the ”philosopherlife”
procedure in each cobegin branch

each branch launches one parallel process

CBChirila (DCTI) FCPL October 4, 2022 37 / 67

Concurrent programming languages

The Philosophers program

proc philosophers

module

array tforks[0...4] (int)

var forks:tforks; i:int;

proc philoright(i:int):int

begin

val philoright:=(i+1) mod 5

end

proc philoleft(i:intr):int

begin

if i=0 do val philoleft:=4

else true val philoleft:=i-1

end

CBChirila (DCTI) FCPL October 4, 2022 38 / 67

Concurrent programming languages

The Philosophers program

*proc get(philo:int)

begin

when forks[philo] = 2 do

forks[philoright(philo)]:=forks[philoright(philo)]-1;

forks[philoleft(philo)]:=forks[philoleft(philo)]-1;

end

end

*proc put(philo:int)

begin

when true do

forks[philoright(philo)]:=forks[philoright(philo)]+1;

forks[philoleft(philo)]:=forks[philoleftt(philo)]+1;

end

end

CBChirila (DCTI) FCPL October 4, 2022 39 / 67

Concurrent programming languages

The Philosophers program

begin

i:=0

while i<5

forks[i]:=2

i:=i+1;

end

end

CBChirila (DCTI) FCPL October 4, 2022 40 / 67

Concurrent programming languages

The Philosophers program

proc philosoperlife(i:int)

begin

while true do

-think-

get(i);

-eat-

put(i);

end

end

CBChirila (DCTI) FCPL October 4, 2022 41 / 67

Concurrent programming languages

The Philosophers program

begin

cobegin

1 do philosopherlife(0) also

2 do philosopherlife(1) also

3 do philosopherlife(2) also

4 do philosopherlife(3) also

5 do philosopherlife(4) also

end

end

CBChirila (DCTI) FCPL October 4, 2022 42 / 67

Distributed systems programing

Distributed systems programming

Distributed system

a set of computers capable of information exchange
computers are called nodes
can be programmed to solve problems involving

concurrency

parallelism

CBChirila (DCTI) FCPL October 4, 2022 43 / 67

Distributed systems programing

Typical algorithmic problems

Synchronization on condition

Message broadcasting to all nodes

Process selection for fulfilling special actions

Termination detection

A node performing an action must be capable of detecting its ending
moment

Mutual exclusion

Using resources by mutual exclusion
Files, printers, etc

Deadlock detection and prevention

Distributed file system management

a PL for distributed systems must have all facilities: Java

example: a chat system

CBChirila (DCTI) FCPL October 4, 2022 44 / 67

Distributed systems programing

The client/server model

Server processes

managing resources

Client processes

accessing resources managed by servers

The message is limited to only one text line

The server

must be started first
developed in the compilation unit Server.java

The client

sens a message
waits for an answer
send the STOP command
developed in the compilation unit Client.java

CBChirila (DCTI) FCPL October 4, 2022 45 / 67

Distributed systems programing

Client.java

import java.net.*; import java.io.*;

class Client

{

public static void main(String[] args) throws IOException

{

Socket cs=null;

BufferedReader is=null; DataOutputStream os=null;

try

{

cs=new Socket("localhost",5678);

is=new BufferedReader(new InputStreamReader(cs.getInputStream()));

os=new DataOutputStream(cs.getOutputStream());

}

catch(UnknownHostException e)

{

System.out.println("No such host");

}

CBChirila (DCTI) FCPL October 4, 2022 46 / 67

Distributed systems programing

Client.java

BufferedReader stdin=

new BufferedReader(new InputStreamReader(System.in));

String line;

for(;;)

{

line=stdin.readLine()+"\n";

os.writeBytes(line);

System.out.println("Transmission:\t"+line);

if(line.equals("STOP\n")) break;

line=is.readLine();

System.out.println("Receiving:\t"+line);

}

System.out.println("READY");

cs.close(); is.close(); os.close();

}

}

CBChirila (DCTI) FCPL October 4, 2022 47 / 67

Distributed systems programing

Server.java

import java.net.*;

import java.io.*;

class Server

{

public static void main(String[] args) throws IOException

{

ServerSocket ss=null; Socket cs=null;

BufferedReader is=null; DataOutputStream os=null;

try

{

ss=new ServerSocket(5678);

System.out.println("The server is running!");

cs=ss.accept();

is=new BufferedReader(new InputStreamReader(cs.getInputStream()));

os=new DataOutputStream(cs.getOutputStream());

CBChirila (DCTI) FCPL October 4, 2022 48 / 67

Distributed systems programing

Server.java

BufferedReader stdin=

new BufferedReader(new InputStreamReader(System.in));

String line;

for(;;)

{

line=is.readLine();

System.out.println("Receiving:\t"+line);

if(line.equals("STOP")) break;

line=stdin.readLine()+"\n";

os.writeBytes(line);

}

}

finally

{

cs.close(); ss.close();

is.close(); os.close();

}

}

}

CBChirila (DCTI) FCPL October 4, 2022 49 / 67

Distributed systems programing

The socket

An IP address identifies a computer in Internet

A port number identifies a program running on a computer

A combination between an IP address and a port is a final point for a
communication path

Two communicating applications must find themselves in the Internet

Typically the client must find the server

CBChirila (DCTI) FCPL October 4, 2022 50 / 67

Distributed systems programing

The socket

The client connects to the server by initiating a socket connection

The first client message to the server contains the client socket

The server transmits its socket address to the client in the first reply
message

Data transmission is done through socket input/output streams

The streams can be accessed through getInputStream() and
getOutputStream() from class Socket

CBChirila (DCTI) FCPL October 4, 2022 51 / 67

Distributed systems programing

Short history of PL development

First high level PL were created in 1950

In this period the efficiency was the main goal

Fortran

Designed by a group from IBM lead by John Bachus 1954

Algol 60

1958-1960
Block structures
Recursive procedures

CBChirila (DCTI) FCPL October 4, 2022 52 / 67

Distributed systems programing

Short history of PL development

Cobol

Financed by Department of Defense in 1959
Economical applications
Files
Data description facilities

record

struct

Used in current days in an evolved version

CBChirila (DCTI) FCPL October 4, 2022 53 / 67

Short history of PL development

Short history of PL development

Late 50s and early 60s

Functional PLs
Lisp

John McCarthy MIT 1955

The main PL in artificial intelligence

APL

Iverson IBM 1962

Imperative PL
Snobol

Bell Laboratories 1964

CBChirila (DCTI) FCPL October 4, 2022 54 / 67

Short history of PL development

Short history of PL development

Mid 60s

there was a large diversity of programming languages

the IBM project intended:

to gather all concepts in a single PL
to replace all other PLs
in 1964 it resulted the PL/I language

limited success

complex

heavy

CBChirila (DCTI) FCPL October 4, 2022 55 / 67

Short history of PL development

Short history of PL development

In the 60s

Algol68, 1968

perfect orthogonality
defined using formal methods

Simula67, 1967

has simulation facilities
uses the class concept for

modularization

abstract data description

CBChirila (DCTI) FCPL October 4, 2022 56 / 67

Short history of PL development

Short history of PL development

Pascal 1971

N. Wirth
Expressivity
Simplicity

ML 1973

University of Edinburgh
Functional PL
Strongly typed

CBChirila (DCTI) FCPL October 4, 2022 57 / 67

Short history of PL development

Short history of PL development

C 1974

one of the most widespread PL
invented by Dennis Ritchie at Bell Labs in 1974
portable implementation for the Unix operating system
programs have good portability

CBChirila (DCTI) FCPL October 4, 2022 58 / 67

Short history of PL development

Short history of PL development

In the 70s

Abstract data types

Program checking

Exception handling

Concurrent programming

CBChirila (DCTI) FCPL October 4, 2022 59 / 67

Short history of PL development

Short history of PL development

Mesa (Terax, 1974)

Concurrent Pascal (Hansen, 1975)

CLU (Liskov, MIT 1974)

Modula2 (Wirth, 1977)

Ada (DoD, 1979)

Prolog (Colmeraurer, 1972)

Logic programming
Artificial intelligence

CBChirila (DCTI) FCPL October 4, 2022 60 / 67

Short history of PL development

Short history of PL development

In the 80s

Common Lisp 1984

Was used and consolidated

Standard ML

SML, Milner, Edinburgh, 1984

Miranda

Turner, Kent, 1985

Haskell

Hudak, 1988

CBChirila (DCTI) FCPL October 4, 2022 61 / 67

Short history of PL development

Short history of PL development

Object-oriented programming languages

SmallTalk

PL and IDE altogether
created by Xerox in the late 70s

C++

created by Bjarne Stroustrup at Bell Labs in 1988
C retrofitted with object-oriented concepts
Widely used in present

CBChirila (DCTI) FCPL October 4, 2022 62 / 67

Short history of PL development

Bjarne Stroustrup seminar at INRIA, Sophia Antipolis,

France, July, 2003

CBChirila (DCTI) FCPL October 4, 2022 63 / 67

Short history of PL development

Short history of PL development

Python

developed in late 80’s by Guido van Rossum in Netherlands
successor of ABC programming language
first released in 1991
Python 2.0 released in 2000, Python 3.0 released in 2008
multiparadigm: object-oriented, structured, support for functional
programming, aspect-oriented programming (meta-programming,
meta-objects)

Object Oberon

Zurich, 1989

Eiffel

developed by Bertrand Meyer in 1988 and also today

Java

developed by Sun Microsystems Inc. in 1995, now by Oracle
object-oriented programming supporting functional programming

CBChirila (DCTI) FCPL October 4, 2022 64 / 67

Short history of PL development

Short history of PL development: Java

industrial strength technology

micro edition - cards, devices
standard edition - desktop applications, interactivity, animation
enterprise edition - distributed applications over the Internet,
mobile edition - mobile apps

in 2022, Java version 19

has anti C++ philosophy

no pointer arithmetic
no manually releasing memory
no multiple inheritance between classes

Other object-oriented PLs

Object Pascal (Delphi, Borland 1995-2000)
CLOS (Common Lisp Object System)
OCAML (object-oriented ML)

CBChirila (DCTI) FCPL October 4, 2022 65 / 67

Short history of PL development

Short history of PL development: C#

general purpose, object-oriented, internationalization

string type checking, array bounds checking

Alpha release in 2000

Microsoft team lead by Anders Hejlsberg

Derived from C, C++ and Java

Portability taken from Java

Can be mixed with other PL: F#, C++, LINQ

designed to build software components deployable in distibuted
environments

Full integration with MS Windows OS

CBChirila (DCTI) FCPL October 4, 2022 66 / 67

Short history of PL development

Bibliography

1 Brian Kernighan, Dennis Ritchie, C Programming Language, second
edition, Prentice Hall, 1978.

2 Carlo Ghezzi, Mehdi Jarayeri – Programming Languages, John Wiley,
1987.

3 Horia Ciocarlie – Universul limbajelor de programare, editia 2-a,
editura Orizonturi Universitare, Timisoara, 2013.

CBChirila (DCTI) FCPL October 4, 2022 67 / 67

	Imperative PLs
	Functional PLs
	Declarative PLs
	Sequential programming vs. concurrent programming
	Parallel vs. concurrent processes
	Concurrent programming languages
	Distributed systems programing
	Short history of PL development

